### Qu'estiment vraiment les bandelettes en traitement d'images ?

Bandelettes, sélection de modèles et maxisets

E. Le Pennec / LPMA / Université Denis Diderot - Paris VII
 S. Mallat, Ch. Dossal et G. Peyré,
 F. Autin, J.-M. Loubes et V. Rivoirard

17 Octobre 2006

# Estimation, Géométries et Bandelettes

Bruitée





- Estimation dans un modèle de bruit blanc gaussien :  $Y = f + \epsilon W$
- $\blacksquare$  Estimation de f dans des bases : seuillage et sélection de modèles.
- Nécessité d'avoir une représentation creuse (approximation, maxiset).
- Efficacité provient d'une forme de régularité.

Estimation

- Images : importance de la géométrie.
- Estimation géométrique des images en bandelettes.

# Plan

- Estimation dans une base et approximation.
- Signaux 1D : Fourier et ondelettes.
- Images 2D et ondelettes.
- Représentation des images géométriques.
- Bandelettes pour les images géométriques.
- Sélection de modèles et optimalité.
- Bases multiéchelles de bandelettes.

### Estimation et modèle de bruit blanc

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW \quad .$$

Dans la suite, projection sur un espace de dimension N et calibrage  $\epsilon = \frac{1}{\sqrt{N}}$ (lien avec la régression) :

$$Y = f + \frac{1}{\sqrt{N}}W$$

- Propriétés de f : propriétés dans le domaine continu.
- **Solution** Estimateur de F : fonction de Y.
- Critère : risque quadratique

$$E(\|f - F\|^2)$$

### **Estimation oracle dans une base**

Décomposition de  $Y = f + \frac{1}{\sqrt{N}}W$  dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left( \langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n \quad .$$

Estimateur F par sélection de coordonnées :

$$F = Y_{\Gamma} = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n \quad .$$

Minimisation du risque quadratique :

$$E(||f - F||^2) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \frac{1}{N}$$

• Solution :  $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$  et  $F_O = Y_{\Gamma_0}$ .

Problème : demande la connaissance de f ! (Oracle $\neq$ estimateur)

# **Oracle, risque et approximation**

Risque quadratique de l'estimateur oracle  $F_O$ :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.

Théorie de l'approximation :

$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \le C\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \|f - f_M\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta} \quad .$$

- Minimax : pour  $\Theta$ , classe de fonctions, quelle base donne  $\Theta \subset \mathcal{A}^{\beta}$  avec  $\beta$  optimal ?  $\left(\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$  vitesse minimax).
- Maxiset : pour une base fixée, quelle est l'ensemble des fonctions estimées avec une vitesse  $(\frac{1}{N})^{\frac{\beta}{\beta+1}}$ ? Ici  $\mathcal{A}^{\beta}$ .

### Estimateur par seuillage

• Oracle : 
$$\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$$
 et  $F_O = Y_{\Gamma_0}$ .

- Stratégie : garder les grands coefficients.
- Seuillage :  $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge T\left(\frac{1}{\sqrt{N}}\right)\}$  et  $F_S = Y_{\Gamma_S}$ .
- Théorème (Donoho, Johnstone) : Si  $T\left(\frac{1}{\sqrt{N}}\right) = \lambda \sqrt{\frac{\log N}{N}}$ , alors

$$E(\|f - F_S\|^2) \le C(\log N)E(\|f - F_O\|^2)$$
$$E(\|f - F_S\|^2) \le C\min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 \frac{\log N}{N} |\Gamma| \quad \text{plus fin.}$$

**•** Théorème (Maxiset) (*Cohen, DeVore, Kerkyacharian, Picard*) :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\beta}{\beta+1}} \Leftrightarrow f \in V^*_{\frac{2\beta}{\beta+1}}$$
  
$$\Leftrightarrow \min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 T^2 |\Gamma| \le C(T^2)^{\frac{\beta}{\beta+1}}$$
  
$$\Leftrightarrow \|f - f_M\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta} \quad .$$

Importance du choix de la base !

# Fonctions $\mathbf{C}^{\alpha}$ et Fourier

- Approche minimax pour les fonctions  $\mathbf{C}^{\alpha}$ .
- Fonctions  $\mathbf{C}^{\alpha}$  : vitesse minimax  $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$   $(\beta = 2\alpha)$ .
- Approximation dans la base de Fourier :

$$\|f - f_M\|^2 \le CM^{-2\alpha}$$

Seuillage dans la base de Fourier :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Vitesse quasi optimale !
- Approche maxiset pour les vitesses  $\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$ :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}} \Leftrightarrow f \in \mathcal{A}^{2\alpha} = \mathcal{W}H^{\alpha}$$

avec  $\mathcal{W}H^{\alpha}$  version faible de  $H^{\alpha}$ .

Minimax-Maxiset :  $\forall f \in \mathbf{C}^{\alpha}, E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}} \Leftrightarrow \mathbf{C}^{\alpha} \subset \mathcal{W}H^{\alpha}$ .

### Fonctions $\mathbf{C}^{\alpha}$ par morceaux et Fourier

Fonctions C<sup>\alpha</sup> par morceaux : vitesse minimax (\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}} (\beta = 2\alpha).
 Approximation dans la base de Fourier (\alpha > 1) :

 $||f - f_M||^2 \le CM^{-2}$ .

- Seuillage dans la base de Fourier  $(\alpha > 1)$ :  $E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2}{2+1}}$ .
- Maxiset :  $\mathbf{C}^{lpha}$  par morceaux  $\subset \mathcal{A}^2 = \mathcal{W}H^1$ .
- mais  $\mathbf{C}^{lpha}$  par morceaux  $\not\subset \mathcal{A}^{2lpha} = \mathcal{W} H^{lpha}.$
- ${}_{igsir}$  Pour obtenir la vitesse minimax,  ${f C}^lpha$  par morceaux  $\subset {\cal A}^{2lpha}.$
- Besoin d'autres bases pour atteindre la vitesse minimax !

# **Base d'ondelettes 1D de** $L^2[0,1]$

Construite à partir d'une fonction d'échelle  $\phi(x)$  et d'une ondelette mère  $\psi(x)$ 



qui sont dilatées par  $2^j$  et translatées de  $2^j n$ 

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \phi\left(\frac{x - 2^j n}{2^j}\right) , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{x - 2^j n}{2^j}\right)$$
  

$$\mathbf{B} = \left\{\psi_{j,n}\right\}_{j \in \mathbb{N}, 2^j n \in [0,1)} \text{ est une base orthonormale de } L^2[0,1].$$

# Approximation non linéaire en ondelettes



Si f est  $\mathbf{C}^{\alpha}$  par morceaux et  $\psi$  a  $p > \alpha$  moments nuls alors

$$||f - f_M||^2 \le C M^{-2\alpha}$$

- Risque de l'estimateur par seuillage :  $E(\|f F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$  (quasi optimal).
- Maxiset associé à la vitesse (<sup>log N</sup>/<sub>N</sub>)<sup>2α/2α+1</sup> (C, DV, K, P, Autin, Rivoirard) : WB<sup>α</sup><sub>2/(2α+1),2/(2α+1)</sub> version faible de B<sup>β/2</sup><sub>2/(2α+1),2/(2α+1)</sub>.
   Clé : C<sup>α</sup> par morceaux ⊂ WB<sup>α</sup><sub>2,∞</sub>.

### **Base d'ondelettes 2D séparables**

La famille  $\begin{cases} \phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, \quad \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\ &, \quad \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) \end{cases} \\ \\ \text{est une base orthonormée de } L^2[0,1]^2. \end{cases}$ 



# Seuillage en ondelettes 2D

- Maxiset associé à la vitesse \$\left(\frac{\log N}{N}\right)^{\begin{smallmatrix}{\begin{smallmatrix}{\begin{smallmatrix}{l} B\_{p,q} \\mathcal{B}\_{p,q} \\mathcal{B}\_{p,q}
- $\textbf{Pb}: \mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \not\subset \mathcal{W}B^{\alpha}_{2/(2\alpha+1), 2/(2\alpha+1)}, \text{ au mieux } \mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \subset BV \subset \mathcal{W}B^{1}_{2/3, 2/3}$





Pb d'approximation : avec M ondelettes || f - f<sub>M</sub> ||<sup>2</sup> ≤ C M<sup>-1</sup>.
 Besoin de || f - f<sub>M</sub> ||<sup>2</sup> ≤ C M<sup>-α</sup> pour le risque minimax.

# Éléments géométriques pour les contours

Approximation de f qui est  $\mathbf{C}^{lpha}$  en dehors de contours  $\mathbf{C}^{lpha}$  :



 $M^{-1}$ 

- Approximation linéaire par morceau sur M triangles adaptés : si  $\alpha \ge 2$  alors  $||f - f_M||^2 \le C M^{-2}$ .
- Approximation d'ordre élevé avec M "éléments" adaptés :  $\|f - f_M\|^2 \le C M^{-\alpha}$ .
- Pas de bases et optimisation difficile.

### Curvelets



- Les curvelets définissent un "tight frame" de  $L^2[0,1]^2$  avec des éléments allongés et orientés (*Candes, Donoho*) :  $\{c_j(R_\theta x \eta)\}_{j,\theta,\eta}$
- Si f est  $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$  alors avec M curvelets :

$$||f - f_M||^2 \le C (\log M)^3 M^{-2}$$
 si  $\alpha \ge 2$ .

- Quasi optimal pour  $\alpha = 2$ .
- Discrétisation complexe et difficultés pour obtenir des bases orthogonales ou des bases de Riesz.

# **Bandelettes**







- Image  $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$  simple par morceaux.
- ${}_{igstacless}$  Déformation locale  $\implies$  singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
  - une segmentation dyadique et
  - une géométrie dans chaque carré.
- **•** Théorème : Si f est  $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ , alors, dans la meilleure base,

 $||f - f_M||^2 \le C(\log M) M^{-\alpha} \quad .$ 

Famille de bases avec un algorithme de recherche de meilleure base.

# Seuillage et sélection de modèles

- Retour sur l'estimateur oracle.
- Risque oracle :  $\Gamma_0 = \operatorname{argmin}_{\Gamma} ||f f_{\Gamma}||^2 + \frac{1}{N}|\Gamma|$  .
- Analogue empirique :  $\Gamma_S = \operatorname{argmin}_{\Gamma} \|Y Y_{\Gamma}\|^2 + \frac{\lambda_N}{N} |\Gamma|$ .
- Minimisation :  $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$  (seuillage) et  $F_S = Y_{\Gamma_S}$ .
- Cadre de la sélection de modèles avec  $pen(m) = \frac{\lambda_N}{N} \dim(m)$  :

$$F_S = \underset{P_mY, \ m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m)$$

- Collection  $\mathcal{M}_N$  des modèles m : ensemble des sous-espaces engendrés par les N vecteurs de base.
- Théorème (*Barron, Birgé, Massart*) : Pour  $\lambda_N = \lambda \log N$  avec  $\lambda$  assez grand,

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda \frac{\log N}{N} \dim(m)$$
.

Cadre permettant de travailler dans plusieurs bases à la fois...

### Sélection de modèles

Théorème (Barron, Birgé, Massart) : Si la collection M<sub>N</sub> de modèles m satisfait une inégalité de Kraft pour des coefficients λ<sub>N,m</sub> (Σ<sub>m∈M<sub>N</sub></sub> e<sup>-λ<sub>N,m</sub> dim(m)</sup> < +∞) alors</li>

$$F_{S} = \underset{P_{m}Y, \ m \in \mathcal{M}_{N}}{\operatorname{argmin}} \|Y - P_{m}Y\|^{2} + (C_{1} + C_{2}\lambda_{N,m}) \frac{\dim(m)}{N}$$

satisfait  $E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N} \quad .$ 

# • Théorème (Maxiset) : $E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$

$$\Leftrightarrow \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_N) \frac{\dim(m)}{N} \le C \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + T^2 \dim(m) \le C \left(T^2\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \|f - f_M\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta} \quad .$$

# **Estimation géométrique**

Contrôle polynomial en fonction de N sur le nombre total de bandelettes.
 Sélection de bandelettes :

$$F_S = \operatorname{argmin} \|Y - P_{\mathcal{M}}Y\|^2 + \lambda \frac{\log N}{N} \operatorname{dim}(\mathcal{M})$$

avec  $\mathcal{M}$  qui contient les sous-espaces des bases de bandelettes.

- Minimisation à 2 étages :
  - à base fixée, seuillage (facile),
  - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : algorithme de meilleure base de Wickerhauser (CART).
- Exploration exhaustive des géométries dans chaque carré.
- Quasi optimalité : si  $f \in \mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$  alors

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}}$$

• Maxiset :  

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}} \Leftrightarrow f \in \mathcal{A}^{\alpha} \Leftrightarrow \forall M, \exists \mathcal{B}, \|f - f_M\|^2 \le CM^{-\alpha}$$

#### Bruitée (20,19 dB)



Bandelettes  $(30,29 \, dB)$ 





#### Ondelettes $(28, 21 \, dB)$



#### Bruitée (20,19 dB)



Bandelettes  $(30,29 \, \mathrm{dB})$ 





#### Ondelettes (28, 21 dB)



#### Bruitée



#### Bandelettes



#### Ondelettes









#### Bruitée (20,19 dB)



#### ${\tt Bandelettes}~(27,\!68\,{\rm dB})$





#### Ondelettes $(25,79 \, dB)$



#### Bruitée



#### Bandelettes



#### Ondelettes









# Vers des images plus nature

- Modèle  $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$  simpliste.
- Les contours sont flous :





Pas un problème pour les bandelettes.

La géométrie vie à plusieurs échelles :







- Comment incorporer une géométrie multiéchelle?
- Comment éviter les effets de bords sans perdre l'orthogonalité?



# **Retour vers les ondelettes**



- Ondelettes : bonne représentation multiéchelles.
- Analogie avec le système visuel.
- Existence de régularité pour les coefficients d'ondelettes.
- Comment l'exploiter ?
- Utilisation du contexte dans JPEG 2000.
- Edgeprint (Vetterli, Dragotti, Baraniuk) : modélisation explicite dans le contexte du codage.
- Bandelettes sur les coefficients?

### **Base locale de bandelettes**



- Bandelettes 2G (*Peyré*) : Changement de base orthogonale adapté à la géométrie sur les coefficients d'ondelette.
- Multirésolution d'espaces d'approximations polynomiales par morceaux.
- Base des compléments orthogonaux de ces espaces (Alpert).
- Image des ondelettes par ce changement de bases : bandelettes 2G.

# Base de bandelettes 2G



- Base de bandelettes :
  - segmentation dyadique des sous-bandes,
  - géométrie dans chaques carrés.
- Algorithme d'optimisation par programmation dynamique (CART) de

$$||f - f_M||^2 + T^2 M$$

**Théorème :** Si f est  $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ , alors, dans la meilleure base,

 $\|f - f_M\|^2 \le CM^{-\alpha}$ 

# **Estimation en bandelettes 2G**

Contrôle polynomial en fonction de N sur le nombre total de bandelettes.
 Estimation par sélection de modèle :

$$F_S = \operatorname{argmin} \|Y - P_{\mathcal{M}}Y\|^2 + \lambda \frac{\log N}{N} \operatorname{dim}(\mathcal{M})$$

avec  ${\mathcal M}$  qui parcourt les sous-espaces d'une famille de bases de bandelettes 2G.

Quasi optimalité : si 
$$f \in \mathbf{C}^{lpha} - \mathbf{C}^{lpha}$$
 alors

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}}$$

Maxiset :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}} \Leftrightarrow f \in \mathcal{A}^{\alpha} \Leftrightarrow \forall M, \exists \mathcal{B}, \|f - f_M\|^2 \le CM^{-\alpha}$$

• Conjecture :  $f \in \mathcal{A}^{\beta} \Leftrightarrow \exists \mathcal{B}, \forall M, \|f - f_M\|^2 \leq CM^{-\beta}$  !

Expérimentation numérique en cours...

# Conclusion

- Rôle central de l'approximation en traitement du signal via les bases (estimation, compression,...).
- Nécessité d'avoir une représentation adaptée au signal.
- Pour les images, importance de la géométrie.
- Bandelettes : une représentation adaptée à la géométrie des images.
- Minimax ou Maxiset? : quelles représentations pour un problème ou quels problèmes pour une représentations?
- Qu'estiment bien les bandelettes? Les images qui s'approchent bien en bandelettes!
- Problèmes ouverts :
  - Caractérisation fonctionnelle des espaces d'approximation en bandelettes.
  - Autres pénalisations  $(l_1, \ldots)$ .